Resorción radicular en pacientes de ortodoncia. Revisión bibliográfica y bibliométrica

Zúñiga-Herrera ID, Ramírez-Salomón MA, Escofí-Ramírez M, Herrera-Atoche JR.
Facultad de Odontología, Universidad Autónoma de Yucatán

RESUMEN

Introducción. La resorción radicular inducida por ortodoncia es el término utilizado para describir la descomposición de la capa protectora de la raíz dental y la pérdida de estructura radicular en sujetos bajo tratamiento ortodóntico. En la mayoría de los casos, la reducción de la longitud radicular es leve e insignificante clínicamente, sin embargo, en ocasiones la RRIO produce una destrucción significativa en las superficies de la raíz dental que resulta en la pérdida permanente de la longitud radicular. El objetivo de esta revisión es sintetizar la información sobre la epidemiología, factores de riesgo y métodos de cuantificación de la RRIO, a partir del año 2000 a la fecha. Resultados. Se realizaron búsquedas en las bases de datos electrónicas EBSCO, Science Direct y Google Académico, con los términos root resorption, external apical root resorption y orthodontically induced EARR. Fueron consultadas 154 publicaciones, se descartaron aquellas que no utilizaran o documentaran métodos de diagnóstico de la RRIO, quedando un total de 68 artículos. Conclusiones. El método ideal para la detección de RRIO es la tomografía computarizada Cone Beam; sin embargo, el uso de la ortopantomografía y radiografía periapical en el medio ortodóntico sigue siendo útil como instrumento diagnóstico.

PALABRAS CLAVES: resorción radicular, diagnóstico, ortodoncia

ABSTRACT

Introduction. Orthodontically-induced root resorption refers to decomposition of the dental root protective layer and loss of root structure in patients under orthodontic treatment. Loss of root length is normally minor and clinically insignificant, but in rare cases root resorption leads to significant destruction of dental root surface and permanent loss of root length. A review was done synthesizing data, risk factors and quantification methods for orthodontically-induced root resorption reported from the year 2000 to the present. Method. Searches were done in the EBSCO, Science Direct and Google Scholar databases using the terms “root resorption”, “external apical root resorption” and “orthodontically induced EARR”. Results. Of 154 publications consulted, those that did not report the use of, or document, root resorption diagnosis methods were excluded, leaving a total of 68 articles. Conclusions. Cone beam computerized tomography is the ideal method for detecting orthodontically-induced root resorption, although panoramic radiographs and periapical radiography continue to be useful diagnostic tools.

KEY WORDS: root resorption, diagnosis, orthodontia.
INTRODUCCIÓN

La resorción radicular externa (RRE) es un proceso patológico en el cual se produce una destrucción significativa de las superficies dentales radiculares, lo cual resulta en la pérdida permanente de la longitud radicular. La aparición de RRE se ha relacionado a fuerzas mecánicas como pueden ser: traumatismos, impactaciones dentarias, reimplantación, anquilosis, quistes, tumores y fuerzas sobre los dientes (1-5). La RRE puede manifestarse en sujetos bajo tratamiento ortodóntico. En la mayoría de los casos, la resorción durante el movimiento ortodóntico cesa cuando termina el tratamiento con aparato y la reducción de la longitud radicular es leve, por lo que se considera un evento insignificante clínicamente (2,3,6). Sin embargo, en ocasiones la RRE produce una destrucción significativa en las superficies de la raíz dental y puede resultar en la pérdida permanente de la longitud radicular. En estos casos se denomina resorción radicular inducida por ortodoncia (RRIO) (3,6-9).

Epidemiología de la resorción radicular inducida por ortodoncia

La American Association of Orthodontists (AAO) estimó que, en el año 2000, 4.5 millones de personas eran tratadas por sus miembros. La extrapolación de sus datos sugiere que entre 90,000 y 225,000 pacientes bajo tratamiento ortodóntico pudieron desarrollar RRIO de más de 5 mm (6). Roscoe et al (2015), así como Abass y Hartsfield (2008) mencionan que la RRIO severa se presenta entre el 2 y el 5% de los pacientes tratados ortodóncitamente (4,10). Alves Pereira et al (2014) reporta una prevalencia entre el 8.5 y el 12.6% (2). Marques et al (2010) refieren afectaciones severas en el 14.5% de una población brasileña, comparando registros radiográficos pre y postratamiento ortodóntico (11). En México, Navarro et al (2014) analizaron diferentes órganos dentarios por separado durante la etapa de cierre de espacios, observando que el 36.7% de los caninos, el 70% de los incisivos laterales y el 66.7% de los incisivos centrales presentaron RRIO de grado leve a moderada (12). En otro estudio realizado por el Departamento de Ortodoncia de la UNAM, se revisaron 55 ortopantomografías digitales de pacientes con el tratamiento terminado, y se observó que todos los dientes presentaron algún grado de resorción, siendo los incisivos superiores e inferiores los más afectados (13). En Yucatán, la investigación más reciente indica una prevalencia del 5.06% (14).

Etiología de la resorción radicular inducida por ortodoncia

La RRIO es un evento complejo y multifactorial. Para explicar su acontecimiento, muchos autores han analizado variables relacionadas al paciente (género, susceptibilidad genética, edad, tipo de maloclusión, anomalías dentales, forma radicular, etc.) y a la biomecánica utilizada durante el tratamiento (tipo de movimiento, aparato, necesidad de extracciones, etc.) (2).

Factores biológicos.

A. Género y edad

La susceptibilidad de desarrollar RRIO puede variar entre individuos. Los resultados que mencionan al género como factor predisponente son contradictorios; hay autores que reportan resorción significativamente mayor en mujeres que en hombres (15); de manera opuesta, otros investigadores afirman que los hombres son más susceptibles a desarrollar RRIO (2). Se encontraron documentos que informan un mayor promedio de resorción en uno u otro género, pero sin diferencias significativas (15). En el estudio realizado por Apajalahti y Peltola (2007) que incluyó los registros de 348 mujeres y 253 hombres, no se encontró una asociación entre la presencia de RRIO y el género (16). En latinoamérica, la diferencia de severidad de resorción entre géneros se aproximó a lo significativo (p=0.574) (11). Con respecto a la edad, es difícil afirmar que los adultos presentan mayor pérdida de tejido radicular que los adolescentes y niños, ya que en la mayoría de los estudios los sujetos que comprenden las muestras son menores a 20 años; sin embargo, hay investigaciones que mencionan una destrucción significativamente mayor en adultos, dependiendo de los dientes evaluados (2,3,16-18).

B. Enfermedades sistémicas.

Davidovich (2000) propuso que las alteraciones en el sistema inmune como las alergias y el asma son factores etiológicos de la RRIO severa (19). Estudios en Japón han probado esta hipótesis con resultados
Resorción radicular en pacientes de ortodoncia. Revisión bibliográfica y bibliométrica.

posívos. Nishioka et al (2006) examinaron a 60 individuos que desarrollaron una resorción excesiva y los comparó con igual número de controles; en sus resultados se observa que incidencia de alergia fue significativamente alta en el grupo que presentó RRIO, la presencia de asma se encontró cercana a la significancia estadística (20). En un artículo más reciente también se ha encontrado una asociación significativa entre la presencia de RRIO severa y alergias (21). La explicación de los resultados mencionados anteriormente es que las alergias y el asma desencadenan diversos eventos biológicos, celulares y moleculares asociados a la inflamación, tales como permeabilidad vascular, migración celular, liberación de mediadores intracelulares, etc.; durante el movimiento dentario ortodóntico, la inflamación es el mecanismo principal por el cual llegan las células y el plasma sanguíneo al ligamento periodontal, por lo tanto las alergias favorecen el ambiente para los procesos osteoclásticos y odontoclásticos durante la aplicación de fuerza ortodóntica (19,21).

C. Genética.

La primera evidencia de la posibilidad de una influencia hereditaria en la RRIO proviene del informe de Harris en 1997, en dicho estudio, se observaron mayores variaciones entre familias que entre hermanos dentro de las familias, lo que indica que existe una predisposición genética importante para el desarrollo de resorción durante la aplicación de fuerzas ortodónticas (22).

Las investigaciones actuales están enfocadas a identificar los diferentes factores genéticos que pudieran desencadenar la aparición de RRIO, y aunque aún no hay una conclusión definitiva, se han realizado avances significativos en el área; un ejemplo de esto es el trabajo de Al-Qawasmi (2003), que reporta la asociación entre la RRIO en incisivos centrales maxilares y el marcador polimórfico D18S64 (LOD score 2.51) vinculado al gen TNFRSF11A, el cual codifica para receptor activador del factor nuclear (RANK), una molécula señalizadora que estimula la fusión de los preosteoclastos, promueve la adherencia de los osteoclastos al hueso, activa su función y aumenta su supervivencia al evitar la apoptosis. El mismo autor, en una publicación diferente, afirma que existe relación entre la RRIO y el polimorfismo IL-1B, el cual codifica citocinas proinflamatorias (7,23), sin embargo en una investigación más reciente realizada en una población japonesa no se encontró tal asociación. Estos resultados contradictorios podrían indicar que las poblaciones caucásicas, afroamericanas e hispánicas tienen diferentes frecuencias en el polimorfismo IL-1B (24).

D. Maloclusión y morfología radicular

Se ha comprobado que las maloclusiones caracterizadas por un exceso vertical y presencia de mordida abierta tienden a presentar valores más altos de resorción, esto podría explicarse debido a la presión constante sobre los incisivos ejercida por la lengua durante la deglución atípica. Otras investigaciones afirman que el overjet aumentado puede contribuir a la presencia de RRIO (2,17). Las discrepancias esqueléticas horizontales aparentemente no tienen ningún impacto en la aparición de la resorción, aunque hay resultados en los cuales la maloclusión clase II división 1 tuvo valores cercanos a lo significativo (2,11).

Un factor que sí ha resultado determinante en el desarrollo de la RRIO es la forma radicular. Al examinar radiografías panorámicas se han identificado 6 tipos de raíces dentales: normal, acortado, romo, erosionado, triangular o afilado, doblado o dilacerado y en forma de botella (17,21). Los estudios que toman como variable de riesgo la anatomía radicular, señalan que los dientes que presentan una morfología anormal presentan un mayor grado de resorción. Los resultados pueden variar dependiendo de los dientes examinados y de los métodos diagnósticos utilizados, pero en general, se con concluye que los incisivos laterales maxilares con raíces dilaceradas, así como los centrales y caninos con raíces de tipo afilado, triangular y en forma de botella, presentan una mayor resorción comparados con los que tuvieron raíces normales (3,9,11,17,21). La explicación para éste fenómeno es que la distribución de las fuerzas ortodónticas en el ápice es diferente de acuerdo a los diferentes tipos de anatomía radicular, en raíces anormales hay una menor superficie por lo que la fuerza se concentra e intensifica considerablemente (12,17,21).

E. Factores mecánicos

Queda claro que hay elementos biológicos individuales que favorecen la aparición de resorción radicular, además de los condicionantes...
mencionados anteriormente deben tenerse en cuenta las variables relacionadas al tratamiento ortodóntico. Aunque existe evidencia científica suficiente, el análisis de los resultados es difícil de realizar de manera independiente, ya que existen correlaciones entre los tipos de movimiento, la intensidad de las fuerzas utilizadas, la duración de los tratamientos, el tipo de aparato usada, etc (10). En general la literatura concluye que la terapia con extracciones, la aplicación de fuerzas pesadas y continuas junto con movimientos que generen compresión de las áreas apicales (inclusión y rotación) son las condiciones que originan un resorción significativamente mayor (2,10,25-35).

DESARROLLO

El diagnóstico de esta patología ha evolucionado junto con el desarrollo de nuevas tecnologías en tercera dimensión. El objetivo de este trabajo es proporcionar una visión panorámica de la actividad científica relacionada con los métodos de cuantificación de la RRIO, a partir del año 2000 a la fecha. La búsqueda se realizó en las bases de datos EBSCO, Science Direct y Google Académico, con los términos root resorption, external apical root resorption y orthodontically induced EARR. La selección de los artículos se basó en el título y en la información contenida en el abstract. En la primera revisión fueron consultadas 154 publicaciones, de las cuales se descartaron aquellas que no utilizaran o documentaron métodos de diagnóstico de la RRIO, quedando un total de 68 artículos (Figura 1).

![Figura 1. Publicaciones de RRIO del año 2000 al 2016.](image1)

En esta etapa se incluyeron artículos de cohorte, ensayos clínicos, reportes de casos y estudios de casos y controles, también se tomaron en cuenta revisiones de la literatura y revisiones sistemáticas, así como opiniones de expertos en el tema.

CONCLUSIONES

Determinar si un individuo desarrolla resorción externa durante o después de su tratamiento ortodóntico presenta varias dificultades, ya que la RRIO es un fenómeno asintomático y de evolución lenta (53). De manera convencional el diagnóstico de RRIO se establece con estudios radiográficos ya sea realizando la medición directa de la longitud radicular en la radiografía o utilizando escalas ordinales para identificar el grado y la severidad de la resorción (51). Sin embargo, el uso de estas imágenes no permite una examinación precisa y a menudo se subestima la extensión de la lesión radicular. La principal limitante son los errores como...
<table>
<thead>
<tr>
<th>Año</th>
<th>Autor</th>
<th>Método diagnóstico</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Sameshima, G.T. (17)</td>
<td>Radiografía periapical</td>
</tr>
<tr>
<td>2002</td>
<td>Llena-Puy, M.C. (36)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td>2003</td>
<td>Al-Qawasmi, R.A (23)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Jiang, R.P. (15)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td>2004</td>
<td>Chan, E.K. (37)</td>
<td>Microscopio electrónico de barrido</td>
</tr>
<tr>
<td></td>
<td>Jimenez-Pellegrin, C. (30)</td>
<td>Microscopio electrónico de barrido</td>
</tr>
<tr>
<td>2005</td>
<td>Iwamatsu-Kobayashi, Y. (38)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Srivicharnkul, P. (39)</td>
<td>Ultra-micro-indentation system (UMIS)</td>
</tr>
<tr>
<td>2006</td>
<td>Nishioka, M. (20)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Casa, M.A. (32)</td>
<td>Microscopio electrónico de barrido</td>
</tr>
<tr>
<td></td>
<td>Chan, E. (33)</td>
<td>Microscopio electrónico de barrido</td>
</tr>
<tr>
<td>2007</td>
<td>Apajalahti, S. (16)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td>2008</td>
<td>Jacobovitz, M. (40)</td>
<td>Radiografía periapical</td>
</tr>
<tr>
<td>2009</td>
<td>Dudić, A. (41)</td>
<td>Ortopantomografía y Tomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Paetyangkul, A. (42)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Tomoyasu, Y. (24)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Deane, S. (43)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td>2010</td>
<td>Marques, L.S. (11)</td>
<td>Radiografía periapical</td>
</tr>
<tr>
<td>2011</td>
<td>Bartley, N. (28)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Bhuva, B. (5)</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Corona, T.G. (34)</td>
<td>Radiografía periapical</td>
</tr>
<tr>
<td></td>
<td>Wu, A.T. (27)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td>2012</td>
<td>Aras, B. (44)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Fontana, M.L. (45)</td>
<td>Radiografía periapical</td>
</tr>
<tr>
<td></td>
<td>Gabor, C. (46)</td>
<td>Microscopio electrónico de barrido</td>
</tr>
<tr>
<td></td>
<td>Lund, H. (47)</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td>2013</td>
<td>Nilsson, E. (48)</td>
<td>Reporte de caso. Ortopantomografía y Tomografía computarizada</td>
</tr>
<tr>
<td>2014</td>
<td>Ajmera, S. (49)</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Alves Pereira, S. (2)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Cakmak, F. (31)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Navarro, P.K. (12)</td>
<td>Radiografía periapical</td>
</tr>
<tr>
<td>2015</td>
<td>Castro, I. (50)</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Herrera, M. (13)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Ioi, H. (21)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td>2016</td>
<td>Agarwal, S. (51)</td>
<td>Ortopantomografía</td>
</tr>
<tr>
<td></td>
<td>Dindaroglu, F. (35)</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Guo, Y. (18)</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Martins, D. C. (29)</td>
<td>Análisis histológico</td>
</tr>
<tr>
<td></td>
<td>Murphy, C. (52)</td>
<td>Microtomografía computarizada</td>
</tr>
<tr>
<td></td>
<td>Puc, C.E. (14)</td>
<td>Ortopantomografía</td>
</tr>
</tbody>
</table>

Figura 3. Autores y método de cuantificación de RRIO.

La magnificación, distorsión y superimposición de las estructuras dentales ya que se genera una imagen bidimensional de un objeto tridimensional, en resumen, solo es posible evaluar el acortamiento o la resorción mesial y dital de la raíz (9,47,51).

Debido a que la RRIO se presenta en forma de cráteres en la superficie y ápice de la raíz dental, se han desarrollado técnicas con microscopio electrónico de barrido para generar modelos digitales de estas lesiones. Diversos estudios han demostrado la eficacia de estos métodos para detectar y medir la RRIO de manera volumétrica, aún en sus etapas iniciales, que en estudios radiográficos son imposibles de observar (30,37). La principal desventaja que se presenta en este tipo de exámenes es que la observación no puede...
hacerse directamente en el paciente, sino que se necesitan modelos animales o dientes humanos programados para extracción como parte de su tratamiento ortodóntico (32,33). Los exámenes con CBCT reproducen la estructura dental de manera tridimensional en cualquier ángulo y permiten cuantificar la cantidad de destrucción radicular con precisión, sin necesidad de extraer tejidos del paciente. El estándar de oro en la actualidad es la Micro-CT, diseñada para obtener imágenes de microestructuras dentales con cortes de hasta 5 μm de grosor (27,28,54). A pesar de que su exactitud es cuestionable, la revisión de la literatura muestra que las ortopantomografías siguen siendo una herramienta diagnóstica importante en la detección de RRIO, esto debido a que son estudios rutinarios en el tratamiento con aparatología ortodóntica, con un bajo costo, que no requieren de una exposición prolongada a radiación y que muestran las estructuras esqueletales y dentales de ambos maxilares. Aunque las modalidades de imagen en tercera dimensión han proporcionado una mejor visualización y un mayor grado de reproducibilidad que la radiografía convencional, su uso en la práctica ortodóntica es limitado, debido los altos costos y a una mayor exposición a la radiación (51).

REFERENCIAS

54. Zahrenowski J, Jeske A. Apical root resorption is associated with comprehensive orthodontic treatment but not clearly dependent on prior tooth characteristics or orthodontic techniques. J Am Dent Assoc 2011;142(1):66-68.